A Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner Matrices
نویسندگان
چکیده
The purpose of this note is to establish a Central Limit Theorem for the number of eigenvalues of a Wigner matrix in an interval. The proof relies on the correct aymptotics of the variance of the eigenvalue counting function of GUE matrices due to Gustavsson, and its extension to large families of Wigner matrices by means of the Tao and Vu Four Moment Theorem and recent localization results by Erdös, Yau and Yin.
منابع مشابه
Moderate deviations for the eigenvalue counting function of Wigner matrices
We establish a moderate deviation principle (MDP) for the number of eigenvalues of a Wigner matrix in an interval. The proof relies on fine asymptotics of the variance of the eigenvalue counting function of GUEmatrices due to Gustavsson. The extension to certain families of Wigner matrices is based on the Tao and Vu Four Moment Theorem and applies localization results by Erdös, Yau and Yin. Mor...
متن کاملLimit Theorems for Spectra of Random Matrices with Martingale Structure
We study classical ensembles of real symmetric random matrices introduced by Eugene Wigner. We discuss Stein’s method for the asymptotic approximation of expectations of functions of the normalized eigenvalue counting measure of high dimensional matrices. The method is based on a differential equation for the density of the semi-circular law.
متن کاملExtreme eigenvalue fluctutations for GUE
Random matrices were introduced in multivariate statistics, in the thirties by Wishart [Wis] and in theoretical physics by Wigner [Wig] in the fifties. Since then, the theory developed in a wide range of mathematics fields and physical mathematics. These lectures give a brief introduction to a well studied model : the Gaussian Unitary ensemble (GUE). The GUE is both a Wigner matrix (independent...
متن کاملProperties of eigenvalue function
For the eigenvalue function on symmetric matrices, we have gathered a number of it’s properties.We show that this map has the properties of continuity, strict continuity, directional differentiability, Frechet differentiability, continuous differentiability. Eigenvalue function will be extended to a larger set of matrices and then the listed properties will prove again.
متن کامل